top of page

Climate Change & Forest Carbon

Climate change and forests are related in many ways. Climate change compromises the health and function of the forest ecosystem. However, forests can reduce the rate and scale of climate change and mitigate its negative impacts.

Click these links to learn more:

- Forest Carbon: An Essential Solution for Climate Change

- Securing Northeast Forest Carbon Project - A collaboration of northeastern states to conserve forest carbon on private lands. Features 4 webinars on carbon science, forest management for carbon, carbon markets, and forest carbon projects. 

Forests are a critical component of the global carbon cycle. They are dynamic systems, constantly absorbing and releasing carbon dioxide. Carbon is removed from the atmosphere through the process of sequestration, which uses carbon for plant photosynthesis. Carbon sequestration is the process of removing carbon from the atmosphere for use in plant photosynthesis. This supports and maintains plant growth. Generally, carbon sequestration rates are greater in  younger (20-70 year old) forests, where the growth of species is maximized following reforestation, or regeneration after a natural or human disturbance.

Carbon resides in forests in different places for different amounts of time. A carbon pool is a part of the forest that stores carbon and can accumulate or lose carbon over time. Forest carbon pools are live aboveground and below ground vegetation, deadwood, litter (leaves, needles, twigs), and soil organic matter.


Carbon storage is the amount of carbon retained in a given area. The amount of carbon stored in a forest at any given time is influenced by several factors. Generally, carbon storage is greater in older forests and structurally complex forests. Forest structure is defined by the size, arrangement, and condition of trees and other vegetation.

A structurally complex forest is one with large trees, small trees, live trees, dead trees (standing and downed), and understory, midstory, and overstory vegetation arranged together. Densities of any one size or condition of vegetation may vary.


Carbon is also stored in wood products. This is an important carbon pool, as the use of durable wood products, particularly those derived from local or regional harvests, reduces carbon emissions associated with carbon-intensive materials such as concrete, steel, and plastics.​

Forests help to slow the rate of climate change by removing carbon dioxide from the atmosphere and storing it.  This is a direct effect, as the primary driver of climate change is the over-abundance of carbon dioxide in the atmosphere. Forests also provide indirect effects which lessen the impacts of climate change on society.


Forest management practices can be tailored to improve forest health and biodiversity, resilience, and adaptability. Reducing harvest frequency and favoring high levels of structural retention, for example, can sequester up to 57% more carbon in northern hardwood-conifer forests (Nunery and Keeton 2010). Managing forests for structural complexity in mixed northern hardwood forests of eastern North America has been found to increase elements of late-successional biodiversity (Dove and Keeton 2015; Gottesman and Keeton 2017; McKenny et al. 2006) and carbon storage (Ford and Keeton 2017) while, at the same time, providing wood products from timber harvests (Nunery and Keeton 2010).

In sum, forest management provides an opportunity to transfer carbon stored in live trees into durable wood products. It simultaneously creates favorable conditions for the removal of additional carbon dioxide from the atmosphere. 

For every one cubic foot of wood harvested from Connecticut forests, over six cubic feet of wood grows.
For every one cubic foot of wood harvested from Massachusetts forests, over five cubic feet of wood grows.
For every one cubic foot of wood harvested from Rhode Island forests, about six cubic feet of wood grows. 


Harvested wood products throughout the US, a byproduct of forest management, remove approximately 103 MMT CO2 eq., while conversion of forest land to non-forest land emits over 126 MMT CO2 eq. to the atmosphere (Domke et al. 2019).


The carbon in durable wood products is stored much longer than the carbon in dead trees (Russell 2014). In southern New England, the volume of wood in trees that die naturally is over three times that contained in harvested trees (Oswalt et al. 2019).

Click here for a guide from The Nature Conservancy and the Northern Institute for Applied Climate Science: 

Healthy Forests for our Future: a Management Guide to Increase Carbon Storage in Northeast Forests


The 30 Percent Climate Solution
An analysis by the New England Forestry Foundation (NEFF) found that New England’s forests can offset 30% of New England’s anticipated carbon emissions over the next 30 years by: halting the loss of forested land to development, establishing forest reserves, using the forestry guidelines developed by NEFF, Exemplary Forestry Standards, using wood as a low-emissions alternative to building materials like steel and concrete, and storing carbon in buildings and durable wood products. This translates into keeping 646 million metric tons of CO2 from entering the atmosphere over the next 30 years. 

Click here for information about carbon and climate change on our resources page

The Climate Change Response Framework,, is a product of the Northeast Institute for applied climate science and contains much information about the impacts of climate change on our landscapes, and the impacts that forest management can have on carbon storage. 

Read more here:

A good read: Three Trees Consulting blog

Thoughts on the Longer Rotation Climate Solution

This interesting blog looks at the carbon benefits of longer rotations in Washington's Doug Fir forests, and while it has potential, there are challenges and tradeoffs associated with it. 

Academic References continued:

Nunery, J.S. and Keeton, W.S. (2010) Forest carbon storage in the northeastern United States: Net effects of harvesting frequency, post-harvest retention, and wood products. Forest Ecology and Management 259(8): 1363-1375.


McKenny, H.C., Keeton, W.S., Donovan, T.M., 2006. Effects of structural complexity enhancement on eastern red-backed salamander (Plethodon cinereus) populations in northern hardwood forests. For. Ecol. Manage. 230, 186–196.


Oswalt S.N., Smith W.B., Miles P.D., and Pugh S.A. (2018) Forest Resources of the United States, 2017: A technical document supporting the Forest Service 2020 RPA Assessment. Gen. Tech. Rep. WO97. Washington, DC: U.S. Department of Agriculture, Forest Service, Washington Office. 237 pp.

Russell, M.B., Woodall C.W., Fraver S., D’Amato A.W., Domke G.M., and Skog K.E. (2014). Residence times and decay rates of downed woody debris biomass/carbon in the Eastern United States. Ecosystems 17:765-777.

bottom of page